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Abstract. We propose a cavity quantum electrodynamics (CQED) experiment to test the violation of a
Bell-type inequality using non-local mesoscopic states (NLMS). These states involve coherent field super-
positions stored in two spatially-separated high-Q cavities. The inequality is expressed in terms of the
measured Wigner function of the entangled two-field-mode system at four points in phase space, as pro-
posed in [Banaszek and Wódkiewicz, Phys. Rev. Lett. 82, 2009 (1999)]. We examine the production of
these entangled NLMS and the measurement of their Wigner function. The experiment involves circular
Rydberg atoms and superconducting millimeter-wave cavities. We present a detailed numerical study of
the optimal inequality violation and of the effect of decoherence. We discuss the range of experimental
parameters making it possible to observe a locality violation and show that they correspond to realistic,
albeit demanding, conditions.

PACS. 03.65.-w Quantum mechanics – 03.65.Ud Entanglement and quantum non-locality – 03.65.Yz
Decoherence; open systems; quantum statistical methods – 42.50.Pq Cavity quantum electrodynamics;
micromasers

1 Introduction

The development of quantum mechanics brought into light
its contradictions with the ‘classical’ intuition. Multipar-
tite superposition (entangled) states presenting non-local
correlations fed a rich debate that remains alive, eighty
years after the introduction of the quantum formalism.
The interest for non-local entangled states ranges from
fundamental tests of quantum mechanics to quantum in-
formation processing. Following on Einstein, Podolski and
Rosen’s discussion [1], Bell [2] showed that a combination
of joint measurements performed on an entangled state
leads to a clear-cut distinction between a classical, local,
description of the physics and quantum mechanics. These
measurement results satisfy, in all local theories, ‘Bell in-
equalities’ [2] violated by quantum mechanics. Bell-type
inequalities have been formulated in many different con-
texts. The simplest one (CHSH inequality) involves a pair
of spin-1/2 particles in a maximally entangled state [3].

Many experiments since Bell’s theorem have vindi-
cated quantum mechanics against local theories [4]. All of
them were testing the CHSH entangled spin correlations.
The Bell inequalities are not limited, however, to this sim-
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ple situation. It would be particularly interesting to test
them in situations involving non-local mesoscopic states
(NLMS). Such states involve quantum correlations be-
tween two mesoscopic objects located at different places.
They could thus be called non-local ‘Schrödinger cat’
states.

These mesoscopic superposition states are highly sen-
sitive to the coupling with the environment. The resulting
decoherence process [5] rapidly destroys the quantum su-
perpositions, which evolve into statistical mixtures. The
non-local properties of NLMS are thus expected to be
washed out rapidly by the coupling with the environ-
ment. Experimental investigations of this original situa-
tion would shed new light both on quantum non-locality
and on the decoherence process itself.

The non-local properties of NLMS and their possible
application to quantum cryptography with continuous-
variable systems [6], generalizing the spin-1/2 particles of
the original protocol [7], have already been discussed in
recent literature. Their general decoherence dynamics has
also been investigated [8]. In the present work, we focus on
the detailed discussion of a feasible cavity quantum elec-
trodynamics (CQED) experiment, producing NLMS and
testing the decoherence of their non-local features.
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CQED provides fruitful experimental set-ups for
tests of quantum mechanical properties of particles and
fields [9]. In particular, the decoherence process of a su-
perposition of mesoscopic microwave fields in a high Q
superconducting cavity has been observed [10]. The cat
states realized in this experiment, stored in a single cavity
mode, did not involve non-locality. The experiment pro-
posed here extends this situation to NLMS stored in two
separate cavities.

The second section of this paper briefly introduces the
two-mode NLMS to be used and recalls the Bell-type in-
equality, based on the joint Wigner function of the two
modes. We then show (Sect. 3) how these states can be
generated by a single circular Rydberg atom crossing the
two cavities. We describe also the measurement of the joint
Wigner function, using another Rydberg atom as a probe.
In the last section (Sect. 4), we give the results of numer-
ical simulations of this experiment. We study in details
the decoherence properties of these non-local states and
show that Bell’s inequalities violations are expected for
achievable, if demanding, experimental parameters.

2 Bell’s inequalities and Wigner function

The standard CHSH Bell inequalities [3] cannot be used
directly in the context of non-local two-mode states, the
quantum system being described by continuous variables
over a four-dimensional phase space. Discretization of the
field observables, however, makes it possible to write sim-
ple Bell-type inequalities. We use here the one proposed
by Banaszek and Wódkiewicz (BW) [11], later generalized
by Jeong et al. [12]. Any local description of reality should
lead to measurements satisfying the following inequality:

B = |Π(α′, β′)+ Π(α, β′)+ Π(α′, β)−Π(α, β)| ≤ 2, (1)

where Π(α, β) = (π2/4)W (α, β) is a scaled version of the
two-mode Wigner function W (α, β) [13] at the point in
the four-dimensional phase space defined by the complex
amplitudes α and β. The ‘Bell signal’, B results from the
sampling of the scaled Wigner function at four points ly-
ing at the vertices of a rectangle. The maximum possible
value for B in quantum mechanics, reached for well-chosen
states and sampling points, is 2

√
2, in contradiction with

equation (1).
The BW version of Bell’s inequalities is interesting in

the CQED context. The Wigner function can then be di-
rectly measured, as proposed in [14], according to a scheme
which has already been realized for a single cavity mode
and zero and one-photon states [15]. In the two-mode
case, the Wigner function measurement scheme is based
on a simple relation between the scaled Wigner function
Π(α1, α2) and the field density matrix ρ̂ [16]:

Π(α1, α2) = Tr

[
ρ̂

2∏
i=1

D̂i(αi)P̂iD̂
−1
i (αi)

]
, (2)

where the index i = 1, 2 stands for the modes. The opera-
tor D̂i(αi) is the displacement operator acting on the ith

mode and P̂i = eiπâ†
i âi is the parity operator for mode i,

with annihilation operator âi. Equation (2) shows that
Π(α, β) is the average of the P̂1P̂2 operator, after a dis-
placement by the amplitudes −α1 and −α2 in modes 1
and 2 respectively. The eigenstates of P̂i are the Fock
states |ni〉, with the eigenvalues (−1)ni . The parity oper-
ators have thus only two possible measurement outcomes
(+1 and −1). The scaled Wigner function is therefore
bounded by ±1:

−1 ≤ Π(α, β) ≤ 1 . (3)

The dichotomic parity observable can be directly com-
pared to the spin 1/2 ones and is thus well-suited to de-
rive the Bell-type inequality (1). A NLMS violating this
inequality involves a correlation of the parities of the two
cavity fields, generalizing the spin correlations in the max-
imally entangled state of the CHSH situation. Note that
other adaptations of the CHSH inequalities to the continu-
ous variable case lead to the selection of other dichotomic
observables and to the use of other types of entangled
states [17,18].

To be specific, we consider the maximally entangled
Schrödinger cats states. We first define single-mode cat
states as |C±〉 = (|γ〉 ± |−γ〉) /N±, where |±γ〉 are coher-
ent states of amplitude ±γ and N± are normalization con-
stants. States |C+〉 and |C−〉 are eigenstates of the parity
operator with eigenvalues +1 and −1 respectively. In the
two-mode situation, we consider the four parity-entangled
states:

∣∣Ψ±〉
=

1
NΨ±

(|C+, C+〉 ± |C−, C−〉)
∣∣Φ±〉

=
1

NΦ±
(|C+, C−〉 ± |C−, C+〉) , (4)

where the first and second symbols in the kets refer to
the first and second mode respectively and NΨ± , NΦ± are
normalization factors.

Note that a simple rewriting of (4) leads to:

∣∣Ψ±〉
=

1
NΨ±

(|±γ, γ〉+ |∓γ,−γ〉)
∣∣Φ±〉

=
1

NΦ±
(|±γ,−γ〉 − |∓γ, γ〉) . (5)

This simpler expression is well suited for the description
of the preparation procedure (next section).

States (4) become orthogonal in the limit γ → ∞ and
form then a Bell basis for the parity observable in the sub-
space of maximally entangled cat states. These four states
describe situations where the parities of the cavity fields
exhibit quantum correlation. For instance, in state |Ψ+〉,
both cavities contain fields with identical parities. Viola-
tions of the inequality (1) can be expected for carefully
chosen sampling points in phase space.

We restrict our discussion here to the case of |Ψ+〉 ∝
(|γ, γ〉 + |−γ,−γ〉). The generalization to the other three
Bell states is straightforward. We can get an insight into
the choice of the sampling points by considering the scaled
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Fig. 1. Cuts in the scaled two-mode Wigner function Π(α, β).
(a) NLMS state

∣∣Ψ+
〉

with γ = 3, in the plane �(α) = �(β) =
0. The two Gaussian peaks at α = β = ±γ (maximum value
0.5) correspond to the two components of the NLMS. The cen-
tral feature (peaking at 1) reveals the quantum coherence of
the state. (b) same plot for a statistical mixture of |γ, γ〉 and
|−γ,−γ〉. Note the absence of the central feature. For (a) and
(b), white corresponds to zero and black to one. (c) NLMS
state

∣∣Ψ+
〉

with γ = 3, in the plane �(α) = �(β) = 0. The co-
herence is revealed by the fringes near the origin. (d) Zoom on
the central region of (c) with the four sampling points leading
to a maximum violation of the Bell inequality. For plots (c)
and (d), white corresponds to –1 and black to +1.

Wigner function Π . Figure 1a, presents a density plot
of Π(α, β), for γ = 3, in the plane �(α) = �(β) = 0.
Three features are conspicuous. The two Gaussian peaks
centered at α = β = ±γ, with a maximum value
0.5, correspond to the two components of the non-local
Schrödinger cat state. The central Gaussian peak has a
maximum value of +1. It corresponds to an interference
feature, revealing the quantum superposition coherence.
It is interesting to compare Figures 1a and 1b, which
presents the scaled Wigner function for a statistical mix-
ture of |γ, γ〉 and | − γ,−γ〉 in the same plane. The two
components are still present, with the same maximum
value 0.5, but the central feature has disappeared.

Since the scaled Wigner function is always positive
in this plane, it is clear that the maximum B value ob-
tained for four real sampling amplitudes is 2, reached when
the sampling points are all at the origin. The same value
is obtained when both cavities are in the vacuum state.
The scaled Wigner function of the vacuum has a single
Gaussian peak (maximum value 1) centered at the ori-
gin. Note also that the optimum B value for a statistical
mixture [Fig. 1b] is 1. It is obtained with the four sam-
pling points sitting on one of the Gaussian components
(α = β = γ or α = β = −γ), with Π = 0.5 for all four
points.

Violations of the Bell inequality (1) can be found for
imaginary sampling amplitudes. Figure 1c presents the
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Fig. 2. Maximum value of the Bell signal Bo [see Eq. (1)]
reached for state

∣∣Ψ+
〉

as a function of the NLMS amplitude γ.

The ‘2 photons cat’ case, γ =
√

2 and Bo = 2.61, is highlighted
by the dotted lines.

scaled Wigner function for imaginary α and β values.
The only feature is centered around the origin and is thus
linked to the state coherence. It disappears altogether for
a statistical mixture of states. This feature is a Gaussian
envelope, modulated with interference fringes. The fringes
spacing is inversely proportional to the NLMS amplitude
γ. For large γ values, the fringes span the entire allowed
range for Π , between −1 and +1. Choosing sampling
points with imaginary amplitudes makes it possible thus
to overcome the classical limit in an optimal way.

Figure 1d presents a zoom on this interference feature
near the origin. The four sampling points should be on the
vertices of a rectangle, with sides parallel to the axes. The
ideal situation corresponds to the three points (α′, β′),
(α, β′) and (α′, β) close to the maximum of the central
positive fringe (which has the maximal contrast), the last
point (α, β) being close the minimum of a nearby negative
fringe. Moreover, the choice of the points should reflect
the obvious symmetries of the fringe pattern (reflection
symmetry with respect to the lines α ± β = 0).

It is thus natural to choose the four points as the cor-
ners of a square, with α′ = β′ and α = β. The opti-
mal positions are obtained with a numerical optimization
on the two remaining parameters, �(α) and �(α′). For
γ = 3, the optimum corresponds to α′ = β′ = −0.035 i
and α = β = 0.095 i. The corresponding sampling am-
plitudes are represented as square dots in Figure 1d. We
obtain Π(α′, β′) = 0.664, Π(α, β′) = Π(α′, β) = 0.737
and Π(α, β) = −0.63, corresponding to B = 2.77. Of
course, sampling points with opposite amplitudes provide
the same B value. Note that reference [12] examines the
violation for the NLMS |Φ−〉. Its scaled Wigner function
is very similar (besides a sign change in the interference
pattern). The points of optimal violation are thus also in
the imaginary plane, contrary to the conclusions of [12].

Figure 2 presents the optimal B value, Bo, as a func-
tion of γ. The Bell inequality (1) is maximally violated
(Bo = 2

√
2) for γ → ∞. The optimal sampling points
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Fig. 3. Proposed experimental set-up. A single circular
Rydberg atom crosses successively the two superconducting
cavities containing a mesoscopic coherent field. The disper-
sive atom-cavity interaction creates the NLMS state

∣∣Ψ+
〉
. The

parity correlations between the two fields is later probed by a
second atom.

correspond to the disposition of Figure 1d, with sampling
amplitudes going to zero as 1/γ. The largest amplitude
NLMS are very sensitive to decoherence processes. A com-
promise between the amplitude of the inequality violation
and the sensitivity to decoherence should thus be reached.
A reasonable one corresponds to γ =

√
2 (‘2 photons

cat’, dotted lines in Fig. 2). We have then Bo = 2.61 for
α = β = 0.175 i, α′ = β′ = −0.05 i. Bell’s inequality vi-
olations are thus expected for relatively small values of γ
and small displacements in phase space. This is encourag-
ing for a CQED implementation.

Note that another Bell-type inequality is derived in [11]
for the two-mode Q function. It is not adapted, however,
to mesoscopic fields situation. The fringes near the ori-
gin revealing the non-classical features of a single mode
Schrödinger cat state are exponentially suppressed in the
Q representation when the amplitude of the cat increases.
The same feature is observed with the NLMS studied here.
No violations of this Q-function inequality can be observed
for γ ≥ 1.

3 Generating NLMS and measuring
the Wigner function in CQED

The parity-entangled state |Ψ+〉 can be generated in the
CQED context with circular Rydberg atoms interacting
with two superconducting niobium high-Q microwave cav-
ities [19]. The apparatus is a simple extension of the
present one-cavity set-up, described in details in [9]. It is
sketched in Figure 3. Rubidium atoms in an atomic beam,
velocity-selected by Doppler-resolved optical pumping, are
promoted at a well defined time in the long-lived circular
Rydberg level e with principal quantum number 51. The
average number of atoms per sample is much lower than
one, ensuring that no events are recorded with two atoms
in the same sample. The atom first interacts, in zone R1,
with a classical microwave field, resonant on the transition
to the lower circular level g (principal quantum number
50; e → g transition frequency 51.1 GHz). This interac-
tion performs a π/2 pulse and prepares the atom in state
(|e〉 + |g〉)/√2.

The atom then crosses the two superconducting cav-
ities C1 and C2, both initially prepared in the coherent

state |λ〉 by the classical sources S1 and S2. The atom in-
teracts dispersively with the cavities, with an atom-field
detuning δ/2π of the order of a hundred kHz. The non-
resonant atom does not exchange energy with the cavity
fields. However, its effective index of refraction transiently
modifies the cavity frequency [9]. The classical phase of the
coherent amplitude in the cavity is thus modified at the
end of the atom-cavity interaction. This phase shift takes
opposite values for an atom in e or g. The transformations
performed by this interaction are |e〉 |λ〉 → eiΦ |e〉 ∣∣λeiΦ

〉
and |g〉 |λ〉 → |g〉 ∣∣λe−iΦ

〉
where Φ = Ω2

0ti/4δ. The ‘vac-
uum Rabi frequency’ Ω0 characterizes the atom-field cou-
pling. It is the frequency of the resonant energy exchange
between an excited atom and an empty mode. The ef-
fective interaction time ti takes into account the mode
geometry crossed by the atom.

We focus here on the case Φ = π/2, reached in real-
istic experimental conditions, as shown below. The atom-
cavities state after the crossing of C1 and C2 is thus
(− |e, γ, γ〉+ |g,−γ,−γ〉)/√2, with γ = iλ. The atom then
undergoes in zone R2 a second π/2 classical pulse resonant
on the e → g transition and performing the state transfor-
mations |e〉 → (− |e〉 + |g〉)/√2 and |g〉 → (|e〉 + |g〉)/√2.
The global state is thus now:

|φ〉 =
1
2

[
|e〉 (|γ, γ〉 + |−γ,−γ〉)

− |g〉 (|γ, γ〉 − |−γ,−γ〉)
]
. (6)

The atom is then detected in the state-selective field ion-
ization counter D. A detection in state e projects the two-
cavity system on the NLMS |Ψ+〉. We discard, for the
present discussion, the events where the atom is finally
detected in g, preparing the two-cavity state |Φ−〉.

Note that this procedure could be easily generalized to
generate more complex superpositions of coherent states.
The non-locality tests proposed in [17], for instance, re-
quire entangled two-mode fields made up of four coherent
amplitudes in phase space. Such states can be generated
by the dispersive interactions of two atoms with the two
cavity modes, combined with proper displacements of the
cavity fields, realized with the sources S1 and S2.

In an ideal non-locality test, the two cavity fields
should be separately probed and the Bell signal inferred
from the compilation of these separate measurements. The
expectation value of the two-mode parity operator can be
straightforwardly obtained from a separate measurement
of the two cavities Wigner functions, following the method
introduced in [14]. It is also possible to infer, from the
quantum Rabi oscillation of atoms interacting resonantly
with the modes, the photon number distribution in each
mode after the translations [20] and hence the parity in-
formation [21].

We consider here a much simpler scheme, where the
two-mode scaled Wigner function Π is measured by a sin-
gle atom A2 crossing the two cavities after A1. The ob-
servation of a Bell inequality violation in these conditions
might not rule out without ambiguity ‘hidden variables’
theories, since the same ‘detector’ interacts successively
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with the two parts of the non-local state. The main goal
of these studies is, however, to illustrate the non-local fea-
tures of quantum mechanics in a new mesoscopic situation
and to investigate the Bell signal decoherence properties.
The use of a single detector atom makes it simpler to
achieve this goal.

The measurement procedure performed by A2, derived
from [14,22], amounts to a measurement of the joint parity
operator in the displaced cavity fields [see Eq. (2)]. We first
inject with S1 and S2 adjustable coherent amplitudes −α
and −β in C1 and C2 respectively. Atom A2 undergoes
the same transformations as A1 in R1, C1, C2 and R2. It
was shown in [14] that the difference of the probabilities
for detecting A2 in |e〉 (Pe) and |g〉 (Pg) provides a direct
measurement of the scaled Wigner function when the atom
interacts dispersively with a single displaced mode. This
result has been generalized to a three-mode case in [22]. It
obviously applies also to the two-mode case studied here.
More specifically:

∆P = Pe − Pg = Π(α, β). (7)

In order to test the BW inequality, one has to measure
Π at the four optimal sampling points in the two-mode
phase space. The measurement of each of these points is
performed by accumulating many individual runs of the
experiment, that are averaged to obtain the probability
difference ∆P .

In any EPR experiment, the observed quantum cor-
relations and the violation of Bell inequalities do not de-
pend upon the timing of the detection events. We have
here a similar freedom. The only requirement on the ex-
perimental timing is that, for each cavity, the coherent
field injection used for the measurement of Π should be
performed after the interaction with the generating atom
A1 and before the interaction with the probe atom A2.
We have implicitly described above a situation where A2

is sent in the apparatus after A1 has been detected. The
same results would be obtained with a much tighter tim-
ing, where A2 enters C1 even before A1 has entered C2.
The minimum time interval between the two atoms thus
corresponds roughly to the effective interaction time ti.
This feature has important consequences when it comes
to the study of the decoherence of the non-locality signal.

4 Realistic simulation of a feasible experiment

We have discussed so far the principle of an ideal exper-
iment. In an actual realization, many imperfections con-
spire to reduce the Bell inequality violation, or even to
cancel it. It is thus important, in order to assess the inter-
est of the proposed experiment, to perform detailed nu-
merical simulations of the whole set-up, taking into ac-
count all known and unavoidable causes of imperfections.

Two main effects are to be taken into account. First,
the dispersive atom-cavity interaction results in the sim-
ple cavity-field phase-shift effect described above in the
perturbative regime, corresponding to an atom-cavity de-
tuning δ much larger than the atom-cavity coupling Ω0.
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Fig. 4. Scaled Wigner function of cavity C1, Π1(δ), after inter-
action of A1 with C1 and C2, when tracing the global state over
C2 and A1. This function results from a numerical integration
of the exact atom-cavity Hamiltonian. The slight deformation
of the coherent components centered at ±√

2 is clearly appar-
ent. White corresponds to zero and black to one.

The Φ = π/2 condition requires values of δ which are not
much bigger than Ω0. The Wigner function of the result-
ing NLMS is thus distorted with respect to the ideal shape
discussed above. This distortion changes slightly the op-
timal sampling values α, α′, β and β′ and affects the
maximum value of B.

We thus proceed to a numerical integration of the ex-
act atom-cavity interaction Hamiltonian. The atom-field
coupling is chosen to be Ω0/2π = 49 kHz, correspond-
ing to the measured value in the present one-cavity set-
up [9]. The coherent field phase shift Φ being proportional
to the interaction time ti, we consider in our simulation
the smallest atomic velocity compatible with the actual
velocity selection scheme. The velocity of both atoms is
thus chosen to be v = 100 m/s. The confocal microwave
Fabry Perot cavities sustain Gaussian field modes with a
waist w = 6 mm. The effective interaction time is thus
ti =

√
πw/(

√
2)v = 75 µs. The Φ = π/2 condition is then

met for an atom-field detuning δ/2π = 160 kHz.
We first compute the joint scaled Wigner function at

the end of the A1-cavities interaction, for an amplitude
γ =

√
2. We plot in Figure 4 the scaled Wigner function

Π1(δ) of the field left in C1 when tracing the global two-
cavity state over C2 and over the atomic state (the cut in
the real plane of the global scaled Wigner function Π is not
adapted for this discussion, since, for a small γ value, the
three features of Figure 1a overlap, making shape distor-
tions less conspicuous). The trace operation leaves in C1

an incoherent mixture of two phase components, clearly
apparent in Figure 4. Note the slight distortion of these
components with respect to the ideal Gaussian shape. An
identical picture is obtained for the Wigner function of C2

when tracing over C1.
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We then numerically simulate the measurement of the
joint Wigner function by cavity displacements and interac-
tion with the second atom A2, using the same parameters.
We optimize the Bell inequality violations by choosing the
displacement amplitudes α = β = 0.27 i, α′ = β′ = 0.04 i.
Note that they are noticeably different from the values
used in the ideal case. The interference features near the
origin, and hence these sampling values, are very sensitive
to the precise shape of the scaled Wigner function. We
obtain then Bo = 2.48, instead of 2.61 in the ideal case,
a value still in the quantum realm. The slight distortion
of the Wigner function due to the finite atom-cavity de-
tuning value does not prohibitively affect the observable
violation of the BW inequality.

The second, much more important effect to be taken
into account is cavity relaxation. It results into a diffusion
process for the Wigner function in phase space. This dif-
fusion washes out rapidly the interference fringes at the
origin, which are a signature of the non-classical and non-
local features of the NLMS. The optimal B value is thus
expected to decrease rapidly versus time in a cavity with
a finite quality factor Q.

We have taken into account relaxation of both cavi-
ties in our numerical simulations. We integrate the full
density matrix evolution. We use the same parameters as
above, and an atomic velocity of 100 m/s. Atom A2 is sent
through C1 a delay T after A1. As already mentioned,
we have a complete freedom on the experimental timing,
provided A2 enters C1 after the displacement operation,
which is performed after the exit of A1. We allow thus the
minimum value of T to be 240 µs. The distance between
A1 and A2 is then 24 mm, much larger than the cavity
modes extension (2w = 12 mm). The interactions of the
two atoms with both cavity modes are thus independent.
Note that the displacement operation is basically instan-
taneous on the experimental time scale.

Once A2 exits C1, all the relevant quantum informa-
tion is stored in the atomic states, which are very long-
lived. Further decoherence processes in C1 during the time
of flight Tf of the two atoms between C1 and C2 thus do
not play any role in the observed Bo value. This is par-
ticularly important, since the minimal realistic distance
between the cavity axes is of the order of 10 cm (cavity
mirror diameter 5 cm), corresponding to Tf ≈ 1 ms. We
assume that the timing of the events in C2 is exactly the
same as in C1, merely translated by the time of flight Tf .
Figure 5 summarizes the global timing.

Figure 6 presents the optimal B values at short times
versus the delay T for two cavities with Q = 1010, corre-
sponding to a field energy lifetime Tc = 30 ms (squares),
and Q = 1011, corresponding to Tc = 300 ms (disks). For
each delay, we perform an optimization of the sampling
amplitudes �(α′) and �(α). At short times, these ampli-
tudes are not affected by relaxation. The contrast of the
fringes in the imaginary plane [see Fig. 1d], and hence the
Bo value, drop rapidly due to the diffusion process, but
the position of the fringes extrema is nearly constant. The
lines in Figure 6 are exponential fits on the initial decay.
The corresponding time constants, 4.3 and 40 ms, give
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Fig. 5. Timing of the proposed experiment. The time is along
the horizontal axis, the position along the vertical one. The
two cavity modes are represented by the shaded areas. The
two atoms correspond to the parallel oblique lines. The field
injection events are represented by the white rectangles on the
cavity modes. The resonant mixing pulses R1 and R2 are rep-
resented by the horizontal gray rectangles.
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Fig. 6. Results of the complete numerical simulation of the
proposed experiment. Squares: computed values of the optimal
Bell signal Bo for an initial two-photon field as a function of
the delay T between the two atoms for Tc = 30 ms (Q = 1010).
Disks: Bo(T ) for Tc = 300 ms (Q = 1011). Lines are exponential
fits with decay time constants of 4.3 and 40 ms. Inset: long-
time behavior of Bo(T ) for Tc = 30 ms. The line connecting
the computed points has been added for visual convenience.

an estimate of the decoherence time scale, of the order of
Tc/D2 = Tc/8, where D = 2

√
2 is the ‘distance’ between

the two cat components.

This rapid decay stops when the Bo value reaches 1,
the value for a statistical mixture. This occurs, for the
shortest cavity damping time, around T = 10 ms. The
optimal sampling points are, from then on, in the real
plane, sitting on the top of one of the components of the
statistical mixture: α′ = β′ = α = β, all of them being
real. These sampling values follow the slow decay of the
amplitude of the two mixed states.
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At much longer times, of the order of a few cavity
damping times, the amplitudes of the fields in both cav-
ities finally decay to zero. The optimal B value returns
thus slowly to 2. The long time behaviour of Bo is plotted
in the inset of Figure 6 for Q = 1010. The fast drop of the
initial violation is almost instantaneous on this time scale.
A plateau near Bo = 1 is observed between 10 and 80 ms,
followed by the slow return to the vacuum value Bo = 2.

Figure 6 thus shows that significant violations of Bell
inequalities could be observed with γ = 2 on a significant
time delay span. For smaller cat amplitudes, the decoher-
ence time scale is longer. The decoherence-free optimal
value of B is nevertheless smaller and significantly larger
violations of Bell inequalities are not expected. The fast
decrease of the decoherence time scale with γ, on the other
hand, precludes the use of much larger cat amplitudes.
The two-photon cat considered here appears as a good
compromise for Q values which are not out of reach for
superconducting cavities [23].

5 Conclusions

We have shown that cavity QED techniques with circu-
lar Rydberg atoms and superconducting cavities are well
suited to the production of non-local mesoscopic state su-
perpositions by a single atom interacting successively with
two cavity modes. The violation of a Bell-type inequality,
adapted to this continuous variable situation, reveals the
non-local nature of this cat. A readout atom is used to
perform the corresponding measurements.

We have carefully analyzed the expected experimental
imperfections. A realistic simulation of the atom-cavity in-
teraction exhibits a slight distortion of the non-local state,
as compared to the ideal situation. A clear violation of
the Bell inequality is nevertheless still observable. Cavity
relaxation is a more serious obstacle, since state prepa-
ration and read out require a time interval not negligible
at the scale of the decoherence time. We have shown that
Bell inequalities violations could nevertheless be observed
with cavity damping times in the 30 ms range. This is
larger that the present performances of open Fabry Perot
cavities (Tc = 1 ms), but well within reach of supercon-
ducting cavities technologies. There is thus a good hope to
observe quantum non-locality on mesoscopic states with
a two-cavity Rydberg-atom set-up, presently under con-
struction in our laboratory.
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